Подробно изложены три формализации понятия алгоритма - машины Тьюринга, рекурсивные функции и нормальные алгоритмы Маркова, доказана их эквивалентность. Рассмотрены основные теоремы общей теории алгоритмов, теория разрешимых и перечислимых множеств, алгоритмически неразрешимые массовые проблемы, теория сложности вычислений и массовых проблем, алгоритмические проблемы математической логики и других разделов математики. Охарактеризованы взаимосвязи теории алгоритмов с компьютерами и информатикой. Для студентов университетов, технических и педагогических вузов, обучающихся по специальностям "Математика", "Прикладная математика", "Математик-педагог", "Учитель математики" на уровнях бакалавриата, магистратуры, а также специалитета.
Podrobno izlozheny tri formalizatsii ponjatija algoritma - mashiny Tjuringa, rekursivnye funktsii i normalnye algoritmy Markova, dokazana ikh ekvivalentnost. Rassmotreny osnovnye teoremy obschej teorii algoritmov, teorija razreshimykh i perechislimykh mnozhestv, algoritmicheski nerazreshimye massovye problemy, teorija slozhnosti vychislenij i massovykh problem, algoritmicheskie problemy matematicheskoj logiki i drugikh razdelov matematiki. Okharakterizovany vzaimosvjazi teorii algoritmov s kompjuterami i informatikoj. Dlja studentov universitetov, tekhnicheskikh i pedagogicheskikh vuzov, obuchajuschikhsja po spetsialnostjam "Matematika", "Prikladnaja matematika", "Matematik-pedagog", "Uchitel matematiki" na urovnjakh bakalavriata, magistratury, a takzhe spetsialiteta.