Книга знакомит читателя с основными понятиями функционального анализа, теории меры и интеграла Лебега. В учебном пособии изложены основы теории метрических, банаховых и гильбертовых пространств, линейных функционалов и операторов. Представлен материал, содержащий основные определения, формулировки и доказательства необходимых теорем. Теоретический материал сопровождается подробно разобранными примерами. В книге изложены методы и приемы решения достаточно широкого круга задач по функциональному анализу разного уровня сложности. Пособие содержит большое количество вопросов и упражнений для самостоятельной работы. Содержание учебного пособия соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э.Баумана. Пособие предназначено для студентов, обучающихся по направлениям "Математика", "Прикладная математика", "Прикладная математика и информатика", "Фундаментальная математика и механика", "Техническая физика", "Системный анализ и управление", "Компьютерная безопасность",...
Kniga znakomit chitatelja s osnovnymi ponjatijami funktsionalnogo analiza, teorii mery i integrala Lebega. V uchebnom posobii izlozheny osnovy teorii metricheskikh, banakhovykh i gilbertovykh prostranstv, linejnykh funktsionalov i operatorov. Predstavlen material, soderzhaschij osnovnye opredelenija, formulirovki i dokazatelstva neobkhodimykh teorem. Teoreticheskij material soprovozhdaetsja podrobno razobrannymi primerami. V knige izlozheny metody i priemy reshenija dostatochno shirokogo kruga zadach po funktsionalnomu analizu raznogo urovnja slozhnosti. Posobie soderzhit bolshoe kolichestvo voprosov i uprazhnenij dlja samostojatelnoj raboty. Soderzhanie uchebnogo posobija sootvetstvuet kursu lektsij, kotoryj avtory chitajut v MGTU im. N.E.Baumana. Posobie prednaznacheno dlja studentov, obuchajuschikhsja po napravlenijam "Matematika", "Prikladnaja matematika", "Prikladnaja matematika i informatika", "Fundamentalnaja matematika i mekhanika", "Tekhnicheskaja fizika", "Sistemnyj analiz i upravlenie", "Kompjuternaja bezopasnost",...